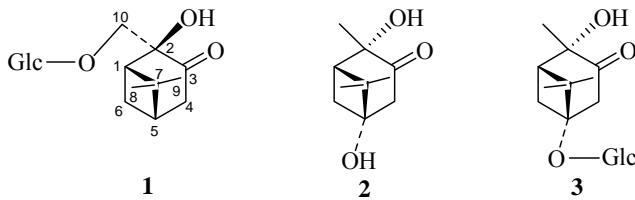


Note

New monoterpenoids from *Dracocephalum forrestii* aerial parts

Gan-Peng Li^{1,2}, Jing-Feng Zhao¹, Li-Juan Yang², Xiao-Dong Yang¹ & Liang Li^{1*}

¹Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
E-mail: liliang5758@sina.com


²School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming 650031, P.R. China

Received 31 October 2006; accepted (revised) 17 April 2007

Dracocephalum forrestii (Lamiaceae) has been used as astringent, diuretic and antipyretic in traditional Tibetan medicine. Three new 2-hydroxyl substituted pinanone-type monoterpenoids, 2 β ,10-dihydroxy-3-pinane 10-*O*- β -D-glucopyranoside 1, 2 α ,5 α -dihydroxypinan-3-one 2, and 2 α ,5 α -dihydroxy-3-pinane 5-*O*- β -D-glucopyranoside 3, are isolated from the whole plant of this medicine. The structures of compounds 1-3 are determined by spectroscopic methods.

Keywords: Monoterpenoids, *Dracocephalum forrestii*

Dracocephalum forrestii (Lamiaceae), commonly known as qinglan, is a wild perennial plant growing in Lijiang and Diqing regions of Yunnan province, P. R. China¹. It has been used as astringent, diuretic and antipyretic in traditional Tibetan medicine². We have reported on the isolation of several known and novel pentacyclic triterpenoids from the whole plant of *Dracocephalum forrestii*³. As a continuation of investigation on the chemical constituents of this medicine, three new monoterpenes were isolated, namely, 2 β ,10-dihydroxy-3-pinane 10-*O*- β -D-glucopyranoside 1, 2 α ,5 α -dihydroxypinan-3-one 2, and 2 α ,5 α -dihydroxy-3-pinane 5-*O*- β -D-glucopyranoside 3. The structures of compounds 1-3 were determined by spectroscopic methods.

Results and Discussion

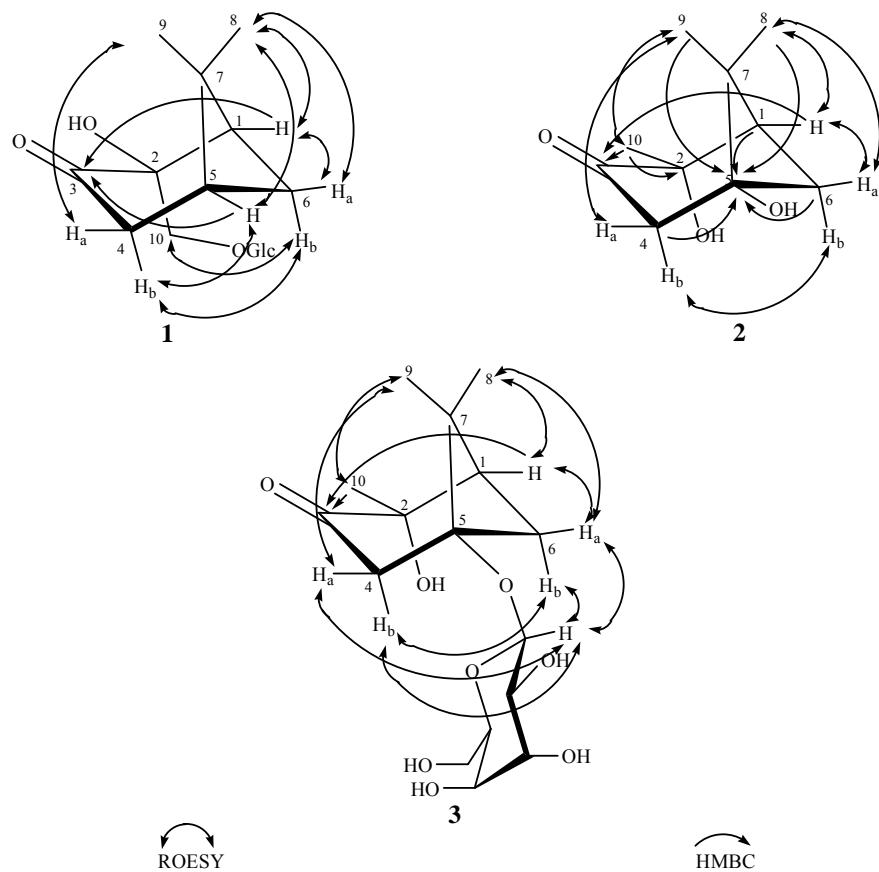
The dried plant material of *D. forrestii* was

extracted with 70% EtOH. The extract was filtered, concentrated in *vacuo* to a suitable volume, suspended in H₂O, and then successively extracted with petroleum ether, AcOEt, and *n*-BuOH. The *n*-BuOH-soluble part was purified by successive column chromatography on silica gel, RP-18 gel, and Sephadex LH-20 to afford the compounds 1-3.

Compound 1 was obtained as a colourless oil. Its negative FAB-MS spectrum showed a quasimolecular ion peak at *m/z* 345 [M-H]⁻. The molecular formula was determined to be C₁₆H₂₆O₈ by HRESI-MS (*m/z* observed 345.1557 [M-H]⁻, calculated 345.1549), implying four degrees of unsaturation. Absorptions for hydroxyl (3424 cm⁻¹) and carbonyl (1718 cm⁻¹) groups were observed in its IR spectrum. A careful analysis of the ¹H and ¹³C NMR spectral data of 1 revealed that 1 was a monoterpenoid glycoside and the aglycone portion was analogous to that of 2-hydroxy-3-pinane^{4,5}. The sugar moiety was determined to be β -D-glucopyranose on the basis of the large coupling constants of the anomeric proton at δ 4.26 (*J* = 7.8 Hz). HMBC correlations of the anomeric proton of the glucose with C-10 (δ 73.6), and H_b-10 (δ 3.47) with C-Glc-1 (δ 104.9) suggested that the sugar moiety was attached to the C-10 position. The ROESY correlations of H_b-6 (δ 1.52) with H_a-10 (δ 4.11) and H_b-4 (δ 2.52), H-8 (δ 1.36) with H_a-6 (δ 2.58) and H-1 (δ 2.39), and H-9 (δ 0.97) with H_a-4 (δ 2.68) indicated that the OH group at C-2 was β -oriented. Therefore, compound 1 was established as 2 β ,10-dihydroxy-3-pinane 10-*O*- β -D-glucopyranoside.

Compound 2 was obtained as a colourless oil. Its positive ESI-MS spectrum showed a ion peak at *m/z* 207 [M+Na]⁺. The molecular formula was determined to be C₁₀H₁₆O₃ by HRESI-MS (*m/z* observed 207.0989 [M+Na]⁺, calculated 207.0997), implying three degrees of unsaturation. Absorptions for hydroxyl (3389) and carbonyl (1723) cm⁻¹ groups were observed in its IR spectrum. Analysis of the ¹H and ¹³C NMR spectra indicated that 2 was a pinanone-type monoterpenoid. In the HMBC spectrum, C-5 (δ 72.2) coupled to H-1 (δ 2.05), H_a-4 (δ 2.76), H_b-4 (δ 2.65), H_a-6 (δ 2.35), H_b-6 (δ 2.12), H-8 (δ 1.31), and H-9 (δ 0.89), H-10 (δ 1.38) coupled to C-1 (δ 42.8), C-2 (δ 75.0), and C-3 (δ 212.1), revealed that the OH groups were at C-2 and C-

5 positions. The ROESY correlations of H-9 with H-10 and H_a-4, H-8 with H_a-6 and H-1, and H_b-4 with H_b-6 indicated that the OH group at C-2 was α -oriented. Therefore, compound **2** was established as $2\alpha,5\alpha$ -dihydroxypinan-3-one.


Compound **3** was obtained as a colourless oil. Its negative FAB-MS spectrum showed a quasimolecular ion peak at *m/z* 345 [M-H]⁻. The molecular formula was determined to be C₁₆H₂₆O₈ by HRESI-MS (*m/z* observed 345.1560 [M-H]⁻, calculated 345.1549), implying four degrees of unsaturation. Absorptions for hydroxyl (3379) and carbonyl (1716) cm⁻¹ groups were observed in its IR spectrum. Analysis of the ¹H and ¹³C NMR spectra revealed that **3** was a pinanone-type monoterpene glycoside and the aglycone portion was compound **2**. The sugar moiety was determined to be β -D-glucopyranose on the basis of the large coupling constants of the anomeric proton at δ 4.39 (*J* = 7.7 Hz). HMBC correlation of the anomeric proton of the glucose with C-5 (δ 78.4) and ROESY correlations of the anomeric proton with H_a-4 (δ 2.98), H_a-6 (δ 2.52), and H_b-6 (δ 2.14) were observed, which indicated the sugar moiety was attached

to the C-5 position (**Figure 1**). Therefore, compound **3** was established as $2\alpha,5\alpha$ -dihydroxy-3-pinane 5-O- β -D-glucopyranoside.

Experimental Section

General. IR spectra were taken on a Nicolet AVATAR-360. Optical rotations were taken on a Perkin-Elmer-341 polarimeter. The 1D and 2D NMR spectra were recorded on a Bruker DRX-500 spectrometer. FAB-MS was performed on a VG-Autospec-3000 spectrometer. HRESI-MS was performed on a API Qstar Pulsar spectrometer. Column chromatography was carried out on silica gel (200-300 mesh, Qingdao, China), Sephadex LH-20 (Amersham Pharmacia Biotech, Uppsala, Sweden), and RP-18 (Merck, Darmstadt, Germany). TLC was carried out in silica gel (GF₂₅₄, Qingdao, China).

Plant material. The plant material was collected in Xianggelila county, Yunnan Province, China, in September 2002, and identified as *Dracocephalum forrestii* by Mr. A Dou (Deqing Tibetan hospital). A voucher specimen was deposited in Key Laboratory of Medicinal Chemistry for Natural Resource,

Figure 1— Selected ROESY and HMBC correlations of **1**, **2** and **3**

Table I — ^{13}C NMR spectral data of compounds **1-3** (**1** and **3** in CD_3OD , **2** in CDCl_3 ; 125 MHz; δ in ppm).

C	1	2	3
1	47.9 d	42.8 d	45.0 d
2	82.1 s	75.0 s	75.8 s
3	214.5 s	212.1 s	213.2 s
4	44.5 t	48.5 t	49.8 t
5	39.8 d	72.2 s	78.4 s
6	30.3 t	36.9 t	33.9 t
7	40.1 s	44.5 s	45.2 s
8	27.5 q	22.1 q	23.5 q
9	23.2 q	20.3 q	20.9 q
10	73.6 t	25.1 q	24.8 q
Glc-1	104.9 d	99.6 d	
Glc-2	75.2 d	75.1 d	
Glc-3	78.1 d	78.2 d	
Glc-4	71.6 d	71.6 d	
Glc-5	77.9 d	77.7 d	
Glc-6	62.7 t	62.7 t	

Yunnan University.

Extraction and isolation. The air-dried and powdered plant (4.5 kg) was extracted with 70% EtOH ($4 \times 10\text{L}$) at room temperature for 48 hr each time. The residue was suspended in water, and then extracted with petroleum ether, EtOAc and *n*-BuOH, successively. The *n*-BuOH extract (72 g) was chromatographed on silica gel (1.5 kg, 200-300 mesh) and eluted with CHCl_3 containing increasing volume of MeOH (CHCl_3 -MeOH, 95:5-50:50). Fraction A (obtained with CHCl_3 -MeOH 100:5) was chromatographed over RP-18 with 50% MeOH to afford four subfractions. The second subfraction was further purified by chromatography over Sephadex LH-20 with MeOH as the eluent to afford compound **1** (6 mg) and **3** (26 mg). The third subfraction was further purified by chromatography over Sephadex LH-20 with MeOH as the eluent to afford compound **2** (12 mg).

Compound **1**. colourless oil, $[\alpha]_{\text{D}}^{23} -31.1^\circ (c = 0.15, \text{MeOH})$; negative FAB-MS m/z (%): 345 [M-H]⁻ (100), negative HRESI-MS [M-H]⁻ (m/z Calcd. 345.1549, found 345.1557); IR (KBr): 3424, 2926, 1718, 1622, 1383, 1078, 633 cm^{-1} ; ^1H NMR (500 MHz, $\text{CD}_3\text{OD}, \delta$): 2.39 (1H, t, $J = 6.3\text{Hz}$, H-1), 2.68 (1H, dt, $J = 3.2, 18.9\text{Hz}$, H₂-4a), 2.52 (1H, dd, $J = 2.6, 19.2\text{Hz}$, H₂-4b), 2.08 (1H, m, H-5), 2.58 (1H, m, H₂-6a), 1.52 (1H, d, $J = 11.5\text{Hz}$, H₂-6b), 1.36 (3H, s, H₃-

8), 0.97 (3H, s, H₃-9), 4.11 (1H, d, $J = 10.6\text{Hz}$, H₂-10a), 3.47 (1H, d, $J = 10.6\text{Hz}$, H₂-10b), 4.26 (1H, d, $J = 7.8\text{Hz}$, Glc-H-1), 3.18 (1H, dd, $J = 7.8, 9.2\text{Hz}$, Glc-H-2), 3.34 (1H, m, Glc-H-3), 3.26 (1H, m, Glc-H-4), 3.24 (1H, m, Glc-H-5), 3.84 (1H, dd, $J = 1.6, 12.2\text{Hz}$, Glc-H₂-6a), 3.63 (1H, dd, $J = 5.4, 12.2\text{Hz}$, Glc-H₂-6b); ^{13}C NMR (125 MHz, CD_3OD), **Table I**.

Compound **2**. colourless oil, $[\alpha]_{\text{D}}^{23} +5.8^\circ (c = 0.12, \text{MeOH})$; positive ESI-MS m/z (%): 207 [M+Na]⁺ (100), positive HRESI-MS [M+Na]⁺ (m/z calcd. 207.0997, found 207.0989); IR (KBr): 3389, 2975, 2934, 1723, 1624, 1464, 1384, 1303, 1154, 1123, 1072, 1028, 916 cm^{-1} ; ^1H NMR (500 MHz, CDCl_3, δ): 2.05 (1H, d, $J = 7.1\text{Hz}$, H-1), 2.76 (1H, d, $J = 18.8\text{Hz}$, H₂-4a), 2.65 (1H, dd, $J = 6.3, 18.8\text{Hz}$, H₂-4b), 2.35 (1H, m, H₂-6a), 2.12 (1H, d, $J = 10.7\text{Hz}$, H₂-6b), 1.31 (3H, s, H₃-8), 0.89 (3H, s, H₃-9), 1.38 (3H, s, H₃-10); ^{13}C NMR (125 MHz, CDCl_3), **Table I**.

Compound **3**. colourless oil, $[\alpha]_{\text{D}}^{22} -12.9^\circ (c = 0.35, \text{MeOH})$; negative FAB-MS m/z (%): 345 [M-H]⁻ (100), negative HRESI-MS [M-H]⁻ (m/z calcd. 345.1549, found 345.1560); IR (KBr): 3379, 2927, 1716, 1461, 1375, 1300, 1074, 1032, 908 cm^{-1} ; ^1H NMR (500 MHz, $\text{CD}_3\text{OD}, \delta$): 1.98 (1H, d, $J = 7.4\text{Hz}$, H-1), 2.98 (1H, d, $J = 18.9\text{Hz}$, H₂-4a), 2.71 (1H, dd, $J = 3.9, 18.9\text{Hz}$, H₂-4b), 2.52 (1H, m, H₂-6a), 2.14 (1H, d, $J = 10.4\text{Hz}$, H₂-6b), 1.33 (3H, s, H₃-8), 0.88 (3H, s, H₃-9), 1.31 (3H, s, H₃-10), 4.39 (1H, d, $J = 7.7\text{Hz}$, Glc-H-1), 3.16 (1H, dd, $J = 7.7, 9.1\text{Hz}$, Glc-H-2), 3.33 (1H, m, Glc-H-3), 3.29 (1H, m, Glc-H-4), 3.24 (1H, m, Glc-H-5), 3.82 (1H, dd, $J = 2.1, 12.0\text{Hz}$, Glc-H₂-6a), 3.63 (1H, dd, $J = 5.0, 12.0\text{Hz}$, Glc-H₂-6b); ^{13}C NMR (125 MHz, CD_3OD), **Table I**.

References

- 1 Institutum Botanicum Kunmingense Academiae Sinicae Edita, *Index Florae Yunnanensis* (The People's Publishing House of Yunnan, Kunming, China), **1984**, Tomus II, 1722.
- 2 Yang J S & Chu C J C, *Diqing Tibetan Medicines* (Yunnan Nationality Press, Kunming, China), **1989**, Part 2, 394.
- 3 Li G P, Zhao J F, Yang L J, Yang X D & Li L, *Helvetica Chimica Acta*, **89**, **2006**, 3018.
- 4 Ferreira M J P, Rodrigues G V & Emerenciano V P, *Can J Chem*, **79**, **2001**, 1915.
- 5 Murakami N, Saka M, Shimada H, Matsuda H, Yamahara J & Yoshikawa M, *Chem Pharm Bull*, **44**, **1996**, 1279.